Tag Archives: Exploring Science

S207: Very small, or far away?

Crikey. The largest distance measurable is 1044 times bigger than the smallest distance measurable.

Universe

The observable Universe

That is so far out of our range of understanding, it’s almost meaningless. It’s difficult enough for us to imagine relatively small stellar distances, let alone the numbers we’re talking about here.

The largest distance we can measure is the size of the observable Universe, at 1026m. It’s taken light about 13 billion years to reach us; and that’s just a fraction of the Universe’s actual size *boggle*.

Quark

The quarks making up a proton

The smallest distance we can measure is that of a quark (the bits that make up a proton – two up quarks and a down). A quark is about 10-18m. Again, so small that it’s almost incomprehensible.

Human beings have evolved on a scale that runs from around 10-4m to around 104m (plus a little very recent expanding of our horizons) so that fact that we can measure and understand such tiny and vast distances at all is staggering.

I love the fact that my first foray into S207 has completely blown my mind. I knew these facts anyway, from my study of S104 and from general interested geekiness, but the course has presented it in such a way that I see things differently.

The first multimedia sequence is presented by Jocelyn Bell Burnell, the inspirational British astrophysicist. Born in 1943, she was a real pioneer for science (and for women): as a postgraduate student, she discovered the first radio pulsars with her thesis supervisor, Antony Hewish. Shockingly, her name on the paper publishing the discovery was listed second, and she did not share in the Nobel prize awarded to Hewish for her discovery. She is remarkable.

I’ve dived into S207 a little early to try to get a head start, and the very first paragraph of the very first book made my heart soar! The first words I read were:

“Studying physics will change you as a person. At least it should.”

The authors went on to say:

“We want your exposure to physics to change you, and we want you to be consciously aware of that change.”

It is a joy to learn when the teachers are passionate about their subject, and their aim is to inspire and develop a deep love for the subject in their students. I knew I would love this course anyway, because the subject matter is endlessly fascinating. But now I’m sure I’ll love it because it’s going to be taught in such a way that it makes you approach learning with delight.

Studying physics has changed me already over the past few years. I’m looking forward to it changing me more.

Advertisements

Explosions and loose ends

I have Explored Science.

I handed in my final, examinable assessment this week, and – bar the Grand Waiting For Results – my level one course with the Open University is complete. I have a very good feeling about the final assessment (the EMA); I enjoyed completing it, and didn’t find it as frightening or difficult as I expected. I’m not sure if this is a good thing or not…

My feelings at the moment are mixed: I have adored this course with a passion normally reserved for cheese. It’s been an eye-opening, mind-expanding, boggling and awe-inspiring journey, that has often afflicted me with a penchant for too many superlatives. But the Universe is a very large and splendid place, so the odd superlative isn’t necessarily out of place.

However, I’m now both sad that the course has ended, and at a loose end. What now? I find myself wandering aimlessly around the house, tidying and generally finding Things To Do. I started by placing myself in the vicinity of a large glass of wine, but frankly there is only so much of that one can do before one becomes the local lush, so here is a run-down of my Saturday night.

Brace yourselves…

My esteemed and marvellous husband has invited his blokey colleagues to our house for a game of poker. Now, normally, I would take myself to my study and study furiously – but I have no studying to do! And worse – I have no broadband (this is having profound effects on my sense of civilisation; I’d be rubbish in an apocalypse that involves sending us back to the Stone Age) so this blog won’t even reach cyberspace until who knows when. Which is now. Tuesday.

So what have I done with my Saturday night? Well may you ask. It has involved explosions, funk and groove. People: I have Done My Paperwork! Paperwork that has built up since March this year. I’ve filed, organised, stapled, punched holes and recycled like the crazy party animal I am. But before you write this off as a really dull way to spend Saturday night, bear in mind that I have been drinking Waggle Dance throughout, and that my hole punch exploded.

That’s right; there are holes EVERYWHERE. My study is covered in holes. It looks like an example of chaos theory, which is appropriate to my course of study, but not to my innate and, some may say uptight, sense of order and tidiness. It’s making my brain hurt. And I can’t bring the vacuum cleaner in and sort it out until tomorrow, because Joe’s colleagues will think I’m a mentaller.

Woe.

The Indian Summer will continue tomorrow, and I shall make a longbow and a knife. After clearing up the holes, of course.

Quantum leap

It appears that physics and I get on rather well. That is probably apparent from the recent fangirl posts; but now I have it on paper too.

A grand total of 93% for TMA07. I am delighted; it wasn’t one of my better TMAs, and I really wasn’t sure if I’d grasped it properly. I made a couple of silly mistakes – but I can’t complain, and it’s focused my eye for detail a little more closely on the detail!

Here’s a musical interlude:

Book 8 has been pretty interesting so far; I’m searching for life elsewhere in the Universe (as ever) and the journey began by looking at the origins of life on Earth. How far back can we see? Are those tiny squiggles in the rock microfossils, or random arrangements of crystals, or just eye-worms in the heads of the scientists in question?

However long ago life sprang into life on Earth, we now have it on fairly good authority that the building blocks, at least, of life came from the stars, via the intervening space.

Comets brought water; meteorites brought organic compounds.

We haven’t found life anywhere else in the Universe just yet. The chances are it’s just too far away. But it’s crazy to believe that we’re the only life in the staggeringly vast space that we call reality. There are plenty of star systems like our Solar System, and no reason to suggest that there are no other Earth-like planets out there inhabiting that narrow band of space just the right distance from their star – and who knows what lives there?

I like to think that’s where some of the creatures from mythology abide – Pegasus, the unicorns and the odd satyr, together with pixies, fairies and well-adjusted teenagers.

Will we ever visit a different world? Perhaps. Not by conventional means, but who knows what may be possible in the future.

One thing I do know for sure: this planet of ours is extraordinary and beautiful, and thinking about the chances of everything happening just at the right place and time is mindblowing. Not miraculous; just absolutely bloody fantastic.

Now, go and look at Symphony of Science.

The end of days

S104 is really picking up the pace now – I’ve just submitted iCMA 48, with 93%. So that’s good then. And I’m zig-zagging through TMA07, which is due in on September 1.

Actually, it’s going quite well. I still have trouble deciphering some of the question wording, and suspect that they are set by people for whom English is not their first language, but you can’t have everything.

Sometimes, things just snap into place. You need to worry about them for a day or so, fret that actually, you’re rather stupid and you’ll never get this, and then it happens. A golden moment, a small firework in your mind, and there it is: enlightenment and understanding.

Question 2 (c)(i), I have the measure of you. I challenge you to a duel; pick your pistol. I’m confident, knowledgeable, and I shall have my satisfaction, sir.

I’ve very much enjoyed Book 7 – Quarks to Quasars. I’ve struggled a little with the specifics, such as energy levels, and the subtle effects electrons have on one another, not to mention the strength of the various interactions. But the concepts, the wider questions that border on the philosophical as well as the scientific – those, I love.

The feeling of stretching your mind so wide open that you feel it’s entirely possible there may be a permanent split is a heady rush. Have you ever stood on the edge of a cliff, or a very tall building, and had that momentary – just a split second – urge to throw yourself into the void? It’s a little like that.

The Universe started as a very dense, very hot mass of energy, then exploded and expanded. But how? Where did the energy come from? Was it always there, or did it just pop into existence? Lawrence Krauss maintains that yes, it came from nothing. I’m afraid I can’t accept that – which is why I shall keep reading, and watching, and learning.

And what about the “edges” of the Universe? What is it expanding into? Well, nothing that we can comprehend. The Universe has no edges, so to speak. It is everything. Or, it is everything in our comprehension. But that is not to say that there isn’t some”thing” out there beyond that, far beyond our comprehension, made of stuff that we could never know…

The more I learn about our Universe, the more fascinating I find it. I worried that I would lose the meaning of life if I was truly convinced of how insignificant we are – but, if anything, I have experienced the opposite.

Perhaps everyone has (or wants, or needs) to believe in something. I’m not sure. I don’t believe in a god, I know that now. This worried me for a time, as I see some of those I care for deeply, and their faith gives them strength and purpose. What would I have? I think my drive comes from a deep-seated desire to understand our Universe, to find out as much about it as I can. I believe it is within our grasp as a species, if we can manage not to destroy ourselves first. And what we find out may turn out to be completely unexpected.

And, I have faith in people. They are extraordinary.

Exploring Science

As this blog is following and documenting my adventures in science, it seems that I should say a few words about S104 Exploring Science for any prospective students of the Open University.

I’ll start by stating, in no uncertain terms, that this is a Very Difficult Course, particularly if there is no (recent) background in studying science or maths. This is not a light, adult-learning-style, interest-only course: it’s full on, in depth and requires an awful lot of hard work.

If any prospective students are not truly interested in science and really committed to learning, it will be extraordinarily difficult. I work full time, and I try to have a social life too – I have struggled to find the hours required for this course.

However, and I can’t emphasise this enough, S104 Exploring Science is absolutely bloody brilliant. It is Professor-Brian-Cox-jazz-hands-brilliant. Finding the time to study has not been, in any way, a chore.

Some aspects of the syllabus have been easier than others; some have interested me more than others. But overall, it’s fantastic.

Here, I need to pay tribute to my wonderful husband – I could not have done this without him. He has been supportive, interested, helpful (especially with the maths and physics) and he has become a very good cook. Joe’s patience is seemingly never ending, and I know he’s really proud of me. I am proud of him. And I am so grateful.

Anyway. Enough mush. Here are the facts, figures and ravings of an S104 Survivor.

For those thinking of starting S104, I would recommend that you do some reading first – partly to see if you really are that interested in science, and partly because it will give you a good base to build upon. I found Ben Goldacre’s Bad Science to be a great introduction to scientific method, and it’s a good read to boot. His blog is fab.

We Need to Talk About Kelvin by Marcus Chown is also a good read. One of the more wonderful moments of this course was when I realised, in a bolt of inspiration, that I actually understood what I had been reading about a few months earlier.

And as preparation for when you arrive, breathless and exhausted, at the bottom of the mountain that is Quantum Physics, give Jim Al-Khalili’s Quantum: A Guide for the Perplexed a whirl.

In fact, just read everything you can get your hands on, in the daily media, online and in journals such as New Scientist.

Before beginning, brush up your maths. Maths used to terrify me. It’s well worth doing the Open University’s freebie maths book to start.

Exploring Science is a nine-month course, and the course team recommends that a minimum of 16 hours per week is put aside for study. I have found this to be fairly accurate, albeit the study time is probably an average. Most people will find some topics require far less work, while others require much more (biology and quantum physics, please stand up!) .

There are eight books covering different topics, and although the order may seem slightly odd when you first see it – it does all fall into place:

  • Book 1 – Global Warming. This is a fairly gentle introduction to S104, and jumps feet-first into a subject that is bang up-to-date – climate change and all that goes with it.
  • Book 2 – Earth and Space. Geology and geological processes are introduced in part one, while in part two we leave Earth and venture out into the Solar System. Again, this is not too taxing, and is a decent way to ease you in.
  • Book 3 – Energy and Light. Physics-lite – I began this book reminiscing about GCSE physics, and remembering a surprising amount. By the end of the book I realised that this was Grown Up Stuff, leading my thoughts in directions they would never previously have contemplated. The maths began to pick up pace; and rather than becoming baffled and afraid, I developed a deep and abiding love for a beautiful and elegant discipline.
  • Book 4 – The Right Chemistry. Again, it begins with a recap of GCSE chemistry, then steamrollered into the kind of stuff that makes you wonder if, by the end of the course, you’ll be able to run your own meth lab. Fascinating. And if, like me, you were once afraid of the mole, this book will cure your fear.
  • Book 5 – Life. Biology. It’s the thickest book of the lot, and it’s stroppy with it. Life lulls you into a false sense of security, starting with the difference between autotrophs and heterotrophs, looking at prokaryotes and eukaryotes, before steaming into the minute detail of the reactions that make up photosynthesis. Think you know how plants make their food? Think again!
  • Book 6 – Exploring Earth’s History. An interest in fossils and geology will mean you sail through this book. It’s absolutely fascinating, and is a grand illustration of how absolutely everything in our Universe is connected. Our planet is a staggeringly beautiful and complicated place, and I am humble before it.
  • Book 7 – Quarks to Quasars. Mind-bending stuff. But give it time, read everything VERY carefully, more than once, and it WILL make sense. I promise. I found that writing notes in my own words was really helpful.
  • Book 8 – Life in the Universe. I’m not there yet. But the book promises to pull together all the aspects of S104, enabling us to build a complete picture of how the separate disciplines tie together. All branches of science are connected, and feed into each other. It will be good preparation for the End of Module Assessment.

Everybody’s techniques for studying are different, but this is how I approached Exploring Science. As I read through each chapter, I highlighted relevant concepts, ideas and facts, making notes in my own words. I also, as you have probably gathered, began this blog. It is, in part, a method of finding out if I’ve fully understood what I’m learning: if others understand my tales and explanations, it’s a good bet that I have.

Talk to your loved ones: bore them silly! I am lucky to have a husband who is almost as fascinated by this stuff as I am, and many of my friends are crazy about science. (I thank you all so much for listening, reading and generally being interested. I love you guys!)

Use the tools the Open University gives you: do all the activities, because they really do consolidate your learning, as well as being good fun in many cases. The questions dotted throughout the text are brilliant, testing your knowledge and understanding before you come to do the assessments.

And speaking of assessments: at the end of each book, you are required to complete an iCMA (interactive computer-marked assignment) and a TMA (tutor-marked assignment). These contribute to your overall mark, as well as helping to pull together everything you’ve learned.

A good tactic for the iCMAs is to write them out in rough before you enter the answers. My first one was pretty shameful, purely because I hadn’t read the instructions properly! In my excitement at starting the course, I achieved only 80%…

For the TMAs – read the questions really, really carefully! Sometimes the OU examiners do not use language in the way you may expect… I found that leaving the TMAs right until the end of the book meant that I was a little stressed about getting them in on time. The questions helpfully tell you which chapters you should have finished before attempting to answer – I would advise that the TMA is completed as you go along.

Use your tutors, that’s what they’re there for. They are a great source of support, if you’re lucky enough to get a really good, dedicated person. The tutorials are also a good source of support, as well as helping you meet other students.

Use other students too: the tutor forums can be helpful, if you get a good group – or join the S104 group on Facebook. I’ve made some lasting online friends through that, and it’s made me laugh until I cry on more than one occasion. You are not struggling alone.

And finally: enjoy it! It’s been a fantastic experience, and I’m genuinely sad at the thought of the course ending (although I cry at the news, so don’t let that be a measure of normality…). Good luck, and remember:

“What we have learned is like a handful of earth. What we have yet to learn is like the whole world.” Avvaiyar, Indian poet-saint.

Interlude

I’ve been on holiday to the beautiful, wild, staggering Scottish Highlands. Achmelvich, Skye, Poolewe and Applecross, to be precise. So there has been little blogging, and a small holiday from studying.

Tomorrow, I shall be blogging about many things quantum. But for now, I shall leave you with this quote, spoken about physics and chemistry, but true of all things:

“Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.” Marie Curie, Polish-French chemist and physicist, and winner of two Nobel prizes.

Peace out.

Everything must flow

Everything is connected. Absolutely everything. From the more obvious water cycle, to the less obvious carbon cycle, to the frankly astounding and mind-boggling fact that we are all made of stardust.

Simple, observable, everyday phenomena tell us an enormous amount about how the Earth works. For example, I found out during my study of Book 6: Exploring Earth’s History, where that yellowy-orange dust comes from. You know the stuff, it ends up on your car sometimes after it’s rained. That is dust from the Sahara desert, and it only appears after a big sandstorm.

Sahara dust makes its way to our cars

The fine, red dust is carried up into the lower atmosphere by the wind, and – if it’s fine enough, and the wind is blowing in the right direction – it is transported to our little island and deposited on our cars (much to the annoyance of my dad – it’s an abrasive dust, you see, and if you scrub at it the paintwork is damaged).

In the past, dust from all over the Northern Hemisphere was swept up towards Greenland and deposited on the ice cap in the fresh fall of snow. Millenia later, some of our more extraordinary adventure-scientists (I think that’s a reasonable title for them) journeyed to the Arctic and took samples from the ice.

These ice cores tell us, amongst other things, how our climate has changed over the past 140,000 years. They show us the peaks and troughs of temperature, give clues as to how arid or humid the climate was, and tell us about the chemical composition of the atmosphere.

All this comes from the presence of dust in ice, and the proportion of heavy or light isotopes of oxygen (that’s 18O or 16O) in the snow that fell on the ice-cap.

The oldest-known rocks on the planet

Another use for isotopes is in radiometric dating of rocks. The oldest rocks we know about are around 4,280 million years old and occur in Hudson Bay, Canada*. That’s not long after the Earth and the other planets of our solar system formed (about 4,560 million years ago). They are pretty rare; rocks tend to get recycled during tectonic activity.

Rocks are, against all probability and expectation, extraordinarily interesting. Not only do they provide humanity with gems such as diamonds and emeralds; they provide us with fossils. Look at the rocks next time you see a cutting by the side of a road. Really look at them. That layering, if you’re in an area of sedimentary rocks, is giving you a snapshot of the past. You’re looking into prehistory. There may even be fossils in there.

Connected to this geological time-line are deep-ocean cores – the sediments laid down by erosion and the dead organic matter in the seas. They provide another means of establishing a relative time-line – and it’s all calibrated by the radiometric dating of rocks.

The study of rocks gave us the cause of the last mass extinction, that of dinosaurs (and a huge number of other families) in the K-T event about 65 million years ago at the end of the Cretaceous Period and the beginning of the Cenozoic Era. It’s called the K-T event because scientists are awkward so-and-so’s: K comes from the Latin for chalk – “kreta” (for Cretaceous) and T comes from Tertiary (an obsolete – but still used to confuse us students – name for the Cenozoic Era. And here is where I feel old: I’m sure I remember reading in books when I were a wee lass the name Tertiary. Cenozoic is a new one on me).

So what did cause the extinction of the dinosaurs? It probably wasn’t one single event (and it’s pretty much agreed that the other mass extinctions were not caused by a single catastrophic event, but by a combination of changing conditions). There were two events that happened at around the same time, on opposite sides of the world: a 10km meteor smashed into Mexico (you can see the crater on topographical maps) and in India there was, over the course of a couple of million years, an episode of flood-basalt volcanism.

The consequences of a meteor impact are fairly obvious: shockwaves, quakes, but mainly the dust, debris and gases entering the atmosphere. This would only last for a few months; but a few months of starvation is all that is needed to knock a species to its knees. Or its tentacles, if it has no knees. In short, the knock-on effect would be enormous (everything is connected, you see).

Likewise, the volcanism across the world would have a similar effect in terms of gas and dust – but spread over a longer period. CO2 and SO2 levels would rise, increasing the global mean surface temperature (they’re greenhouse gases) – but at the same time, the dust in the atmosphere would increase the planet’s albedo (the amount of sunlight reflected back into space). So overall, the planet would cool, and the rain would be acid.

This had the devastating, but on the surface insignificant, effect of collapsing a population of plankton because it couldn’t photosynthesise. Of course, everything above it in the food chain suffered as well…

Although these events were natural, they should be a cautionary tale to us humans. Every action has consequences. A change to the atmospheric composition can have far-reaching effects; alter the pH of the sea, and the consequences could be devastating. We don’t fully understand how it all works yet; but we know that changing one tiny variable will alter a dozen more in ways that we can’t necessarily predict.

Everything is connected, and it can tell us an enormous amount about ourselves; our past, present and future; where we came from, and where we might go.

To those who say that science takes the mystery out of life: you are so wrong – if anything, it deepens it and whets the appetite for knowledge and understanding. And you are missing out on the adventure of a lifetime.

*The image of the Hudson Bay rocks was borrowed from here: http://www.daviddarling.info/archive/2008/archiveSep08_1.html. I thank the photographer, but will certainly remove it if requested!